In mathematics and control theory, H2, or H-square is a Hardy space with square norm. It is a subspace of L2 space, and is thus a Hilbert space. In particular, it is a reproducing kernel Hilbert space.
Contents |
In general, elements of L2 on the unit circle are given by
whereas elements of H2 are given by
The projection from L2 to H2 (by setting an = 0 when n < 0) is orthogonal.
The Laplace transform given by
can be understood as a linear operator
where is the set of square-integrable functions on the positive real number line, and is the right half of the complex plane. It is more; it is an isomorphism, in that it is invertible, and it isometric, in that it satisfies
The Laplace transform is "half" of a Fourier transform; from the decomposition
one then obtains an orthogonal decomposition of into two Hardy spaces
This is essentially the Paley-Wiener theorem.